FFMPEG-FORMATS(1) FFMPEG-FORMATS(1)
NAME
ffmpeg-formats - FFmpeg formats
DESCRIPTION
This document describes the supported formats (muxers and demuxers) provided by the libavformat library.
FORMAT OPTIONS
The libavformat library provides some generic global options, which can be set on all the muxers and
demuxers. In addition each muxer or demuxer may support so-called private options, which are specific for
that component.
Options may be set by specifying -option value in the FFmpeg tools, or by setting the value explicitly in
the "AVFormatContext" options or using the libavutil/opt.h API for programmatic use.
The list of supported options follows:
avioflags flags (input/output)
Possible values:
direct
Reduce buffering.
probesize integer (input)
Set probing size in bytes, i.e. the size of the data to analyze to get stream information. A higher
value will allow to detect more information in case it is dispersed into the stream, but will
increase latency. Must be an integer not lesser than 32. It is 5000000 by default.
packetsize integer (output)
Set packet size.
fflags flags (input/output)
Set format flags.
Possible values:
ignidx
Ignore index.
genpts
Generate PTS.
nofillin
Do not fill in missing values that can be exactly calculated.
noparse
Disable AVParsers, this needs "+nofillin" too.
igndts
Ignore DTS.
discardcorrupt
Discard corrupted frames.
sortdts
Try to interleave output packets by DTS.
keepside
Do not merge side data.
latm
Enable RTP MP4A-LATM payload.
nobuffer
Reduce the latency introduced by optional buffering
seek2any integer (input)
Allow seeking to non-keyframes on demuxer level when supported if set to 1. Default is 0.
analyzeduration integer (input)
Specify how many microseconds are analyzed to probe the input. A higher value will allow to detect
more accurate information, but will increase latency. It defaults to 5,000,000 microseconds = 5
seconds.
cryptokey hexadecimal string (input)
Set decryption key.
indexmem integer (input)
Set max memory used for timestamp index (per stream).
rtbufsize integer (input)
Set max memory used for buffering real-time frames.
fdebug flags (input/output)
Print specific debug info.
Possible values:
ts
max_delay integer (input/output)
Set maximum muxing or demuxing delay in microseconds.
fpsprobesize integer (input)
Set number of frames used to probe fps.
audio_preload integer (output)
Set microseconds by which audio packets should be interleaved earlier.
chunk_duration integer (output)
Set microseconds for each chunk.
chunk_size integer (output)
Set size in bytes for each chunk.
err_detect, f_err_detect flags (input)
Set error detection flags. "f_err_detect" is deprecated and should be used only via the ffmpeg tool.
Possible values:
crccheck
Verify embedded CRCs.
bitstream
Detect bitstream specification deviations.
buffer
Detect improper bitstream length.
explode
Abort decoding on minor error detection.
careful
Consider things that violate the spec and have not been seen in the wild as errors.
compliant
Consider all spec non compliancies as errors.
aggressive
Consider things that a sane encoder should not do as an error.
use_wallclock_as_timestamps integer (input)
Use wallclock as timestamps.
avoid_negative_ts integer (output)
Possible values:
make_non_negative
Shift timestamps to make them non-negative. Also note that this affects only leading negative
timestamps, and not non-monotonic negative timestamps.
make_zero
Shift timestamps so that the first timestamp is 0.
auto (default)
Enables shifting when required by the target format.
disabled
Disables shifting of timestamp.
When shifting is enabled, all output timestamps are shifted by the same amount. Audio, video, and
subtitles desynching and relative timestamp differences are preserved compared to how they would have
been without shifting.
skip_initial_bytes integer (input)
Set number of bytes to skip before reading header and frames if set to 1. Default is 0.
correct_ts_overflow integer (input)
Correct single timestamp overflows if set to 1. Default is 1.
flush_packets integer (output)
Flush the underlying I/O stream after each packet. Default 1 enables it, and has the effect of
reducing the latency; 0 disables it and may slightly increase performance in some cases.
output_ts_offset offset (output)
Set the output time offset.
offset must be a time duration specification, see the Time duration section in the ffmpeg-utils(1)
manual.
The offset is added by the muxer to the output timestamps.
Specifying a positive offset means that the corresponding streams are delayed bt the time duration
specified in offset. Default value is 0 (meaning that no offset is applied).
Format stream specifiers
Format stream specifiers allow selection of one or more streams that match specific properties.
Possible forms of stream specifiers are:
stream_index
Matches the stream with this index.
stream_type[:stream_index]
stream_type is one of following: 'v' for video, 'a' for audio, 's' for subtitle, 'd' for data, and
't' for attachments. If stream_index is given, then it matches the stream number stream_index of this
type. Otherwise, it matches all streams of this type.
p:program_id[:stream_index]
If stream_index is given, then it matches the stream with number stream_index in the program with the
id program_id. Otherwise, it matches all streams in the program.
#stream_id
Matches the stream by a format-specific ID.
The exact semantics of stream specifiers is defined by the "avformat_match_stream_specifier()" function
declared in the libavformat/avformat.h header.
DEMUXERS
Demuxers are configured elements in FFmpeg that can read the multimedia streams from a particular type of
file.
When you configure your FFmpeg build, all the supported demuxers are enabled by default. You can list all
available ones using the configure option "--list-demuxers".
You can disable all the demuxers using the configure option "--disable-demuxers", and selectively enable
a single demuxer with the option "--enable-demuxer=DEMUXER", or disable it with the option
"--disable-demuxer=DEMUXER".
The option "-formats" of the ff* tools will display the list of enabled demuxers.
The description of some of the currently available demuxers follows.
applehttp
Apple HTTP Live Streaming demuxer.
This demuxer presents all AVStreams from all variant streams. The id field is set to the bitrate variant
index number. By setting the discard flags on AVStreams (by pressing 'a' or 'v' in ffplay), the caller
can decide which variant streams to actually receive. The total bitrate of the variant that the stream
belongs to is available in a metadata key named "variant_bitrate".
asf
Advanced Systems Format demuxer.
This demuxer is used to demux ASF files and MMS network streams.
-no_resync_search bool
Do not try to resynchronize by looking for a certain optional start code.
concat
Virtual concatenation script demuxer.
This demuxer reads a list of files and other directives from a text file and demuxes them one after the
other, as if all their packet had been muxed together.
The timestamps in the files are adjusted so that the first file starts at 0 and each next file starts
where the previous one finishes. Note that it is done globally and may cause gaps if all streams do not
have exactly the same length.
All files must have the same streams (same codecs, same time base, etc.).
The duration of each file is used to adjust the timestamps of the next file: if the duration is incorrect
(because it was computed using the bit-rate or because the file is truncated, for example), it can cause
artifacts. The "duration" directive can be used to override the duration stored in each file.
Syntax
The script is a text file in extended-ASCII, with one directive per line. Empty lines, leading spaces
and lines starting with '#' are ignored. The following directive is recognized:
"file path"
Path to a file to read; special characters and spaces must be escaped with backslash or single
quotes.
All subsequent directives apply to that file.
"ffconcat version 1.0"
Identify the script type and version. It also sets the safe option to 1 if it was to its default -1.
To make FFmpeg recognize the format automatically, this directive must appears exactly as is (no
extra space or byte-order-mark) on the very first line of the script.
"duration dur"
Duration of the file. This information can be specified from the file; specifying it here may be more
efficient or help if the information from the file is not available or accurate.
If the duration is set for all files, then it is possible to seek in the whole concatenated video.
Options
This demuxer accepts the following option:
safe
If set to 1, reject unsafe file paths. A file path is considered safe if it does not contain a
protocol specification and is relative and all components only contain characters from the portable
character set (letters, digits, period, underscore and hyphen) and have no period at the beginning of
a component.
If set to 0, any file name is accepted.
The default is -1, it is equivalent to 1 if the format was automatically probed and 0 otherwise.
flv
Adobe Flash Video Format demuxer.
This demuxer is used to demux FLV files and RTMP network streams.
-flv_metadata bool
Allocate the streams according to the onMetaData array content.
libgme
The Game Music Emu library is a collection of video game music file emulators.
See for more information.
Some files have multiple tracks. The demuxer will pick the first track by default. The track_index option
can be used to select a different track. Track indexes start at 0. The demuxer exports the number of
tracks as tracks meta data entry.
For very large files, the max_size option may have to be adjusted.
libquvi
Play media from Internet services using the quvi project.
The demuxer accepts a format option to request a specific quality. It is by default set to best.
See for more information.
FFmpeg needs to be built with "--enable-libquvi" for this demuxer to be enabled.
image2
Image file demuxer.
This demuxer reads from a list of image files specified by a pattern. The syntax and meaning of the
pattern is specified by the option pattern_type.
The pattern may contain a suffix which is used to automatically determine the format of the images
contained in the files.
The size, the pixel format, and the format of each image must be the same for all the files in the
sequence.
This demuxer accepts the following options:
framerate
Set the frame rate for the video stream. It defaults to 25.
loop
If set to 1, loop over the input. Default value is 0.
pattern_type
Select the pattern type used to interpret the provided filename.
pattern_type accepts one of the following values.
sequence
Select a sequence pattern type, used to specify a sequence of files indexed by sequential
numbers.
A sequence pattern may contain the string "%d" or "%0Nd", which specifies the position of the
characters representing a sequential number in each filename matched by the pattern. If the form
"%d0Nd" is used, the string representing the number in each filename is 0-padded and N is the
total number of 0-padded digits representing the number. The literal character '%' can be
specified in the pattern with the string "%%".
If the sequence pattern contains "%d" or "%0Nd", the first filename of the file list specified by
the pattern must contain a number inclusively contained between start_number and
start_number+start_number_range-1, and all the following numbers must be sequential.
For example the pattern "img-%03d.bmp" will match a sequence of filenames of the form
img-001.bmp, img-002.bmp, ..., img-010.bmp, etc.; the pattern "i%%m%%g-%d.jpg" will match a
sequence of filenames of the form i%m%g-1.jpg, i%m%g-2.jpg, ..., i%m%g-10.jpg, etc.
Note that the pattern must not necessarily contain "%d" or "%0Nd", for example to convert a
single image file img.jpeg you can employ the command:
ffmpeg -i img.jpeg img.png
glob
Select a glob wildcard pattern type.
The pattern is interpreted like a "glob()" pattern. This is only selectable if libavformat was
compiled with globbing support.
glob_sequence (deprecated, will be removed)
Select a mixed glob wildcard/sequence pattern.
If your version of libavformat was compiled with globbing support, and the provided pattern
contains at least one glob meta character among "%*?[]{}" that is preceded by an unescaped "%",
the pattern is interpreted like a "glob()" pattern, otherwise it is interpreted like a sequence
pattern.
All glob special characters "%*?[]{}" must be prefixed with "%". To escape a literal "%" you
shall use "%%".
For example the pattern "foo-%*.jpeg" will match all the filenames prefixed by "foo-" and
terminating with ".jpeg", and "foo-%?%?%?.jpeg" will match all the filenames prefixed with
"foo-", followed by a sequence of three characters, and terminating with ".jpeg".
This pattern type is deprecated in favor of glob and sequence.
Default value is glob_sequence.
pixel_format
Set the pixel format of the images to read. If not specified the pixel format is guessed from the
first image file in the sequence.
start_number
Set the index of the file matched by the image file pattern to start to read from. Default value is
0.
start_number_range
Set the index interval range to check when looking for the first image file in the sequence, starting
from start_number. Default value is 5.
ts_from_file
If set to 1, will set frame timestamp to modification time of image file. Note that monotonity of
timestamps is not provided: images go in the same order as without this option. Default value is 0.
video_size
Set the video size of the images to read. If not specified the video size is guessed from the first
image file in the sequence.
Examples
· Use ffmpeg for creating a video from the images in the file sequence img-001.jpeg, img-002.jpeg, ...,
assuming an input frame rate of 10 frames per second:
ffmpeg -framerate 10 -i 'img-%03d.jpeg' out.mkv
· As above, but start by reading from a file with index 100 in the sequence:
ffmpeg -framerate 10 -start_number 100 -i 'img-%03d.jpeg' out.mkv
· Read images matching the "*.png" glob pattern , that is all the files terminating with the ".png"
suffix:
ffmpeg -framerate 10 -pattern_type glob -i "*.png" out.mkv
mpegts
MPEG-2 transport stream demuxer.
fix_teletext_pts
Overrides teletext packet PTS and DTS values with the timestamps calculated from the PCR of the first
program which the teletext stream is part of and is not discarded. Default value is 1, set this
option to 0 if you want your teletext packet PTS and DTS values untouched.
rawvideo
Raw video demuxer.
This demuxer allows to read raw video data. Since there is no header specifying the assumed video
parameters, the user must specify them in order to be able to decode the data correctly.
This demuxer accepts the following options:
framerate
Set input video frame rate. Default value is 25.
pixel_format
Set the input video pixel format. Default value is "yuv420p".
video_size
Set the input video size. This value must be specified explicitly.
For example to read a rawvideo file input.raw with ffplay, assuming a pixel format of "rgb24", a video
size of "320x240", and a frame rate of 10 images per second, use the command:
ffplay -f rawvideo -pixel_format rgb24 -video_size 320x240 -framerate 10 input.raw
sbg
SBaGen script demuxer.
This demuxer reads the script language used by SBaGen to generate binaural
beats sessions. A SBG script looks like that:
-SE
a: 300-2.5/3 440+4.5/0
b: 300-2.5/0 440+4.5/3
off: -
NOW == a
+0:07:00 == b
+0:14:00 == a
+0:21:00 == b
+0:30:00 off
A SBG script can mix absolute and relative timestamps. If the script uses either only absolute timestamps
(including the script start time) or only relative ones, then its layout is fixed, and the conversion is
straightforward. On the other hand, if the script mixes both kind of timestamps, then the NOW reference
for relative timestamps will be taken from the current time of day at the time the script is read, and
the script layout will be frozen according to that reference. That means that if the script is directly
played, the actual times will match the absolute timestamps up to the sound controller's clock accuracy,
but if the user somehow pauses the playback or seeks, all times will be shifted accordingly.
tedcaptions
JSON captions used for .
TED does not provide links to the captions, but they can be guessed from the page. The file
tools/bookmarklets.html from the FFmpeg source tree contains a bookmarklet to expose them.
This demuxer accepts the following option:
start_time
Set the start time of the TED talk, in milliseconds. The default is 15000 (15s). It is used to sync
the captions with the downloadable videos, because they include a 15s intro.
Example: convert the captions to a format most players understand:
ffmpeg -i http://www.ted.com/talks/subtitles/id/1/lang/en talk1-en.srt
MUXERS
Muxers are configured elements in FFmpeg which allow writing multimedia streams to a particular type of
file.
When you configure your FFmpeg build, all the supported muxers are enabled by default. You can list all
available muxers using the configure option "--list-muxers".
You can disable all the muxers with the configure option "--disable-muxers" and selectively enable /
disable single muxers with the options "--enable-muxer=MUXER" / "--disable-muxer=MUXER".
The option "-formats" of the ff* tools will display the list of enabled muxers.
A description of some of the currently available muxers follows.
aiff
Audio Interchange File Format muxer.
Options
It accepts the following options:
write_id3v2
Enable ID3v2 tags writing when set to 1. Default is 0 (disabled).
id3v2_version
Select ID3v2 version to write. Currently only version 3 and 4 (aka. ID3v2.3 and ID3v2.4) are
supported. The default is version 4.
crc
CRC (Cyclic Redundancy Check) testing format.
This muxer computes and prints the Adler-32 CRC of all the input audio and video frames. By default audio
frames are converted to signed 16-bit raw audio and video frames to raw video before computing the CRC.
The output of the muxer consists of a single line of the form: CRC=0xCRC, where CRC is a hexadecimal
number 0-padded to 8 digits containing the CRC for all the decoded input frames.
See also the framecrc muxer.
Examples
For example to compute the CRC of the input, and store it in the file out.crc:
ffmpeg -i INPUT -f crc out.crc
You can print the CRC to stdout with the command:
ffmpeg -i INPUT -f crc -
You can select the output format of each frame with ffmpeg by specifying the audio and video codec and
format. For example to compute the CRC of the input audio converted to PCM unsigned 8-bit and the input
video converted to MPEG-2 video, use the command:
ffmpeg -i INPUT -c:a pcm_u8 -c:v mpeg2video -f crc -
framecrc
Per-packet CRC (Cyclic Redundancy Check) testing format.
This muxer computes and prints the Adler-32 CRC for each audio and video packet. By default audio frames
are converted to signed 16-bit raw audio and video frames to raw video before computing the CRC.
The output of the muxer consists of a line for each audio and video packet of the form:
, , , , , 0x
CRC is a hexadecimal number 0-padded to 8 digits containing the CRC of the packet.
Examples
For example to compute the CRC of the audio and video frames in INPUT, converted to raw audio and video
packets, and store it in the file out.crc:
ffmpeg -i INPUT -f framecrc out.crc
To print the information to stdout, use the command:
ffmpeg -i INPUT -f framecrc -
With ffmpeg, you can select the output format to which the audio and video frames are encoded before
computing the CRC for each packet by specifying the audio and video codec. For example, to compute the
CRC of each decoded input audio frame converted to PCM unsigned 8-bit and of each decoded input video
frame converted to MPEG-2 video, use the command:
ffmpeg -i INPUT -c:a pcm_u8 -c:v mpeg2video -f framecrc -
See also the crc muxer.
framemd5
Per-packet MD5 testing format.
This muxer computes and prints the MD5 hash for each audio and video packet. By default audio frames are
converted to signed 16-bit raw audio and video frames to raw video before computing the hash.
The output of the muxer consists of a line for each audio and video packet of the form:
, , , , ,
MD5 is a hexadecimal number representing the computed MD5 hash for the packet.
Examples
For example to compute the MD5 of the audio and video frames in INPUT, converted to raw audio and video
packets, and store it in the file out.md5:
ffmpeg -i INPUT -f framemd5 out.md5
To print the information to stdout, use the command:
ffmpeg -i INPUT -f framemd5 -
See also the md5 muxer.
gif
Animated GIF muxer.
It accepts the following options:
loop
Set the number of times to loop the output. Use "-1" for no loop, 0 for looping indefinitely
(default).
final_delay
Force the delay (expressed in centiseconds) after the last frame. Each frame ends with a delay until
the next frame. The default is "-1", which is a special value to tell the muxer to re-use the
previous delay. In case of a loop, you might want to customize this value to mark a pause for
instance.
For example, to encode a gif looping 10 times, with a 5 seconds delay between the loops:
ffmpeg -i INPUT -loop 10 -final_delay 500 out.gif
Note 1: if you wish to extract the frames in separate GIF files, you need to force the image2 muxer:
ffmpeg -i INPUT -c:v gif -f image2 "out%d.gif"
Note 2: the GIF format has a very small time base: the delay between two frames can not be smaller than
one centi second.
hls
Apple HTTP Live Streaming muxer that segments MPEG-TS according to the HTTP Live Streaming (HLS)
specification.
It creates a playlist file and numbered segment files. The output filename specifies the playlist
filename; the segment filenames receive the same basename as the playlist, a sequential number and a .ts
extension.
For example, to convert an input file with ffmpeg:
ffmpeg -i in.nut out.m3u8
See also the segment muxer, which provides a more generic and flexible implementation of a segmenter, and
can be used to perform HLS segmentation.
Options
This muxer supports the following options:
hls_time seconds
Set the segment length in seconds. Default value is 2.
hls_list_size size
Set the maximum number of playlist entries. If set to 0 the list file will contain all the segments.
Default value is 5.
hls_wrap wrap
Set the number after which the segment filename number (the number specified in each segment file)
wraps. If set to 0 the number will be never wrapped. Default value is 0.
This option is useful to avoid to fill the disk with many segment files, and limits the maximum
number of segment files written to disk to wrap.
start_number number
Start the playlist sequence number from number. Default value is 0.
Note that the playlist sequence number must be unique for each segment and it is not to be confused
with the segment filename sequence number which can be cyclic, for example if the wrap option is
specified.
ico
ICO file muxer.
Microsoft's icon file format (ICO) has some strict limitations that should be noted:
· Size cannot exceed 256 pixels in any dimension
· Only BMP and PNG images can be stored
· If a BMP image is used, it must be one of the following pixel formats:
BMP Bit Depth FFmpeg Pixel Format
1bit pal8
4bit pal8
8bit pal8
16bit rgb555le
24bit bgr24
32bit bgra
· If a BMP image is used, it must use the BITMAPINFOHEADER DIB header
· If a PNG image is used, it must use the rgba pixel format
image2
Image file muxer.
The image file muxer writes video frames to image files.
The output filenames are specified by a pattern, which can be used to produce sequentially numbered
series of files. The pattern may contain the string "%d" or "%0Nd", this string specifies the position
of the characters representing a numbering in the filenames. If the form "%0Nd" is used, the string
representing the number in each filename is 0-padded to N digits. The literal character '%' can be
specified in the pattern with the string "%%".
If the pattern contains "%d" or "%0Nd", the first filename of the file list specified will contain the
number 1, all the following numbers will be sequential.
The pattern may contain a suffix which is used to automatically determine the format of the image files
to write.
For example the pattern "img-%03d.bmp" will specify a sequence of filenames of the form img-001.bmp,
img-002.bmp, ..., img-010.bmp, etc. The pattern "img%%-%d.jpg" will specify a sequence of filenames of
the form img%-1.jpg, img%-2.jpg, ..., img%-10.jpg, etc.
Examples
The following example shows how to use ffmpeg for creating a sequence of files img-001.jpeg,
img-002.jpeg, ..., taking one image every second from the input video:
ffmpeg -i in.avi -vsync 1 -r 1 -f image2 'img-%03d.jpeg'
Note that with ffmpeg, if the format is not specified with the "-f" option and the output filename
specifies an image file format, the image2 muxer is automatically selected, so the previous command can
be written as:
ffmpeg -i in.avi -vsync 1 -r 1 'img-%03d.jpeg'
Note also that the pattern must not necessarily contain "%d" or "%0Nd", for example to create a single
image file img.jpeg from the input video you can employ the command:
ffmpeg -i in.avi -f image2 -frames:v 1 img.jpeg
The strftime option allows you to expand the filename with date and time information. Check the
documentation of the "strftime()" function for the syntax.
For example to generate image files from the "strftime()" "%Y-%m-%d_%H-%M-%S" pattern, the following
ffmpeg command can be used:
ffmpeg -f v4l2 -r 1 -i /dev/video0 -f image2 -strftime 1 "%Y-%m-%d_%H-%M-%S.jpg"
Options
start_number
Start the sequence from the specified number. Default value is 1. Must be a non-negative number.
update
If set to 1, the filename will always be interpreted as just a filename, not a pattern, and the
corresponding file will be continuously overwritten with new images. Default value is 0.
strftime
If set to 1, expand the filename with date and time information from "strftime()". Default value is
0.
The image muxer supports the .Y.U.V image file format. This format is special in that that each image
frame consists of three files, for each of the YUV420P components. To read or write this image file
format, specify the name of the '.Y' file. The muxer will automatically open the '.U' and '.V' files as
required.
matroska
Matroska container muxer.
This muxer implements the matroska and webm container specs.
Metadata
The recognized metadata settings in this muxer are:
title
Set title name provided to a single track.
language
Specify the language of the track in the Matroska languages form.
The language can be either the 3 letters bibliographic ISO-639-2 (ISO 639-2/B) form (like "fre" for
French), or a language code mixed with a country code for specialities in languages (like "fre-ca"
for Canadian French).
stereo_mode
Set stereo 3D video layout of two views in a single video track.
The following values are recognized:
mono
video is not stereo
left_right
Both views are arranged side by side, Left-eye view is on the left
bottom_top
Both views are arranged in top-bottom orientation, Left-eye view is at bottom
top_bottom
Both views are arranged in top-bottom orientation, Left-eye view is on top
checkerboard_rl
Each view is arranged in a checkerboard interleaved pattern, Left-eye view being first
checkerboard_lr
Each view is arranged in a checkerboard interleaved pattern, Right-eye view being first
row_interleaved_rl
Each view is constituted by a row based interleaving, Right-eye view is first row
row_interleaved_lr
Each view is constituted by a row based interleaving, Left-eye view is first row
col_interleaved_rl
Both views are arranged in a column based interleaving manner, Right-eye view is first column
col_interleaved_lr
Both views are arranged in a column based interleaving manner, Left-eye view is first column
anaglyph_cyan_red
All frames are in anaglyph format viewable through red-cyan filters
right_left
Both views are arranged side by side, Right-eye view is on the left
anaglyph_green_magenta
All frames are in anaglyph format viewable through green-magenta filters
block_lr
Both eyes laced in one Block, Left-eye view is first
block_rl
Both eyes laced in one Block, Right-eye view is first
For example a 3D WebM clip can be created using the following command line:
ffmpeg -i sample_left_right_clip.mpg -an -c:v libvpx -metadata stereo_mode=left_right -y stereo_clip.webm
Options
This muxer supports the following options:
reserve_index_space
By default, this muxer writes the index for seeking (called cues in Matroska terms) at the end of the
file, because it cannot know in advance how much space to leave for the index at the beginning of the
file. However for some use cases -- e.g. streaming where seeking is possible but slow -- it is
useful to put the index at the beginning of the file.
If this option is set to a non-zero value, the muxer will reserve a given amount of space in the file
header and then try to write the cues there when the muxing finishes. If the available space does not
suffice, muxing will fail. A safe size for most use cases should be about 50kB per hour of video.
Note that cues are only written if the output is seekable and this option will have no effect if it
is not.
md5
MD5 testing format.
This muxer computes and prints the MD5 hash of all the input audio and video frames. By default audio
frames are converted to signed 16-bit raw audio and video frames to raw video before computing the hash.
The output of the muxer consists of a single line of the form: MD5=MD5, where MD5 is a hexadecimal number
representing the computed MD5 hash.
For example to compute the MD5 hash of the input converted to raw audio and video, and store it in the
file out.md5:
ffmpeg -i INPUT -f md5 out.md5
You can print the MD5 to stdout with the command:
ffmpeg -i INPUT -f md5 -
See also the framemd5 muxer.
mov, mp4, ismv
MOV/MP4/ISMV (Smooth Streaming) muxer.
The mov/mp4/ismv muxer supports fragmentation. Normally, a MOV/MP4 file has all the metadata about all
packets stored in one location (written at the end of the file, it can be moved to the start for better
playback by adding faststart to the movflags, or using the qt-faststart tool). A fragmented file consists
of a number of fragments, where packets and metadata about these packets are stored together. Writing a
fragmented file has the advantage that the file is decodable even if the writing is interrupted (while a
normal MOV/MP4 is undecodable if it is not properly finished), and it requires less memory when writing
very long files (since writing normal MOV/MP4 files stores info about every single packet in memory until
the file is closed). The downside is that it is less compatible with other applications.
Options
Fragmentation is enabled by setting one of the AVOptions that define how to cut the file into fragments:
-moov_size bytes
Reserves space for the moov atom at the beginning of the file instead of placing the moov atom at the
end. If the space reserved is insufficient, muxing will fail.
-movflags frag_keyframe
Start a new fragment at each video keyframe.
-frag_duration duration
Create fragments that are duration microseconds long.
-frag_size size
Create fragments that contain up to size bytes of payload data.
-movflags frag_custom
Allow the caller to manually choose when to cut fragments, by calling "av_write_frame(ctx, NULL)" to
write a fragment with the packets written so far. (This is only useful with other applications
integrating libavformat, not from ffmpeg.)
-min_frag_duration duration
Don't create fragments that are shorter than duration microseconds long.
If more than one condition is specified, fragments are cut when one of the specified conditions is
fulfilled. The exception to this is "-min_frag_duration", which has to be fulfilled for any of the other
conditions to apply.
Additionally, the way the output file is written can be adjusted through a few other options:
-movflags empty_moov
Write an initial moov atom directly at the start of the file, without describing any samples in it.
Generally, an mdat/moov pair is written at the start of the file, as a normal MOV/MP4 file,
containing only a short portion of the file. With this option set, there is no initial mdat atom, and
the moov atom only describes the tracks but has a zero duration.
Files written with this option set do not work in QuickTime. This option is implicitly set when
writing ismv (Smooth Streaming) files.
-movflags separate_moof
Write a separate moof (movie fragment) atom for each track. Normally, packets for all tracks are
written in a moof atom (which is slightly more efficient), but with this option set, the muxer writes
one moof/mdat pair for each track, making it easier to separate tracks.
This option is implicitly set when writing ismv (Smooth Streaming) files.
-movflags faststart
Run a second pass moving the index (moov atom) to the beginning of the file. This operation can take
a while, and will not work in various situations such as fragmented output, thus it is not enabled by
default.
-movflags rtphint
Add RTP hinting tracks to the output file.
Example
Smooth Streaming content can be pushed in real time to a publishing point on IIS with this muxer.
Example:
ffmpeg -re <> -movflags isml+frag_keyframe -f ismv http://server/publishingpoint.isml/Streams(Encoder1)
mp3
The MP3 muxer writes a raw MP3 stream with an ID3v2 header at the beginning and optionally an ID3v1 tag
at the end. ID3v2.3 and ID3v2.4 are supported, the "id3v2_version" option controls which one is used.
Setting "id3v2_version" to 0 will disable the ID3v2 header completely. The legacy ID3v1 tag is not
written by default, but may be enabled with the "write_id3v1" option.
The muxer may also write a Xing frame at the beginning, which contains the number of frames in the file.
It is useful for computing duration of VBR files. The Xing frame is written if the output stream is
seekable and if the "write_xing" option is set to 1 (the default).
The muxer supports writing ID3v2 attached pictures (APIC frames). The pictures are supplied to the muxer
in form of a video stream with a single packet. There can be any number of those streams, each will
correspond to a single APIC frame. The stream metadata tags title and comment map to APIC description
and picture type respectively. See for allowed picture types.
Note that the APIC frames must be written at the beginning, so the muxer will buffer the audio frames
until it gets all the pictures. It is therefore advised to provide the pictures as soon as possible to
avoid excessive buffering.
Examples:
Write an mp3 with an ID3v2.3 header and an ID3v1 footer:
ffmpeg -i INPUT -id3v2_version 3 -write_id3v1 1 out.mp3
To attach a picture to an mp3 file select both the audio and the picture stream with "map":
ffmpeg -i input.mp3 -i cover.png -c copy -map 0 -map 1
-metadata:s:v title="Album cover" -metadata:s:v comment="Cover (Front)" out.mp3
Write a "clean" MP3 without any extra features:
ffmpeg -i input.wav -write_xing 0 -id3v2_version 0 out.mp3
mpegts
MPEG transport stream muxer.
This muxer implements ISO 13818-1 and part of ETSI EN 300 468.
The recognized metadata settings in mpegts muxer are "service_provider" and "service_name". If they are
not set the default for "service_provider" is "FFmpeg" and the default for "service_name" is "Service01".
Options
The muxer options are:
-mpegts_original_network_id number
Set the original_network_id (default 0x0001). This is unique identifier of a network in DVB. Its main
use is in the unique identification of a service through the path Original_Network_ID,
Transport_Stream_ID.
-mpegts_transport_stream_id number
Set the transport_stream_id (default 0x0001). This identifies a transponder in DVB.
-mpegts_service_id number
Set the service_id (default 0x0001) also known as program in DVB.
-mpegts_pmt_start_pid number
Set the first PID for PMT (default 0x1000, max 0x1f00).
-mpegts_start_pid number
Set the first PID for data packets (default 0x0100, max 0x0f00).
-mpegts_m2ts_mode number
Enable m2ts mode if set to 1. Default value is -1 which disables m2ts mode.
-muxrate number
Set muxrate.
-pes_payload_size number
Set minimum PES packet payload in bytes.
-mpegts_flags flags
Set flags (see below).
-mpegts_copyts number
Preserve original timestamps, if value is set to 1. Default value is -1, which results in shifting
timestamps so that they start from 0.
-tables_version number
Set PAT, PMT and SDT version (default 0, valid values are from 0 to 31, inclusively). This option
allows updating stream structure so that standard consumer may detect the change. To do so, reopen
output AVFormatContext (in case of API usage) or restart ffmpeg instance, cyclically changing
tables_version value:
ffmpeg -i source1.ts -codec copy -f mpegts -tables_version 0 udp://1.1.1.1:1111
ffmpeg -i source2.ts -codec copy -f mpegts -tables_version 1 udp://1.1.1.1:1111
...
ffmpeg -i source3.ts -codec copy -f mpegts -tables_version 31 udp://1.1.1.1:1111
ffmpeg -i source1.ts -codec copy -f mpegts -tables_version 0 udp://1.1.1.1:1111
ffmpeg -i source2.ts -codec copy -f mpegts -tables_version 1 udp://1.1.1.1:1111
...
Option mpegts_flags may take a set of such flags:
resend_headers
Reemit PAT/PMT before writing the next packet.
latm
Use LATM packetization for AAC.
Example
ffmpeg -i file.mpg -c copy \
-mpegts_original_network_id 0x1122 \
-mpegts_transport_stream_id 0x3344 \
-mpegts_service_id 0x5566 \
-mpegts_pmt_start_pid 0x1500 \
-mpegts_start_pid 0x150 \
-metadata service_provider="Some provider" \
-metadata service_name="Some Channel" \
-y out.ts
null
Null muxer.
This muxer does not generate any output file, it is mainly useful for testing or benchmarking purposes.
For example to benchmark decoding with ffmpeg you can use the command:
ffmpeg -benchmark -i INPUT -f null out.null
Note that the above command does not read or write the out.null file, but specifying the output file is
required by the ffmpeg syntax.
Alternatively you can write the command as:
ffmpeg -benchmark -i INPUT -f null -
ogg
Ogg container muxer.
-page_duration duration
Preferred page duration, in microseconds. The muxer will attempt to create pages that are
approximately duration microseconds long. This allows the user to compromise between seek granularity
and container overhead. The default is 1 second. A value of 0 will fill all segments, making pages as
large as possible. A value of 1 will effectively use 1 packet-per-page in most situations, giving a
small seek granularity at the cost of additional container overhead.
segment, stream_segment, ssegment
Basic stream segmenter.
This muxer outputs streams to a number of separate files of nearly fixed duration. Output filename
pattern can be set in a fashion similar to image2.
"stream_segment" is a variant of the muxer used to write to streaming output formats, i.e. which do not
require global headers, and is recommended for outputting e.g. to MPEG transport stream segments.
"ssegment" is a shorter alias for "stream_segment".
Every segment starts with a keyframe of the selected reference stream, which is set through the
reference_stream option.
Note that if you want accurate splitting for a video file, you need to make the input key frames
correspond to the exact splitting times expected by the segmenter, or the segment muxer will start the
new segment with the key frame found next after the specified start time.
The segment muxer works best with a single constant frame rate video.
Optionally it can generate a list of the created segments, by setting the option segment_list. The list
type is specified by the segment_list_type option. The entry filenames in the segment list are set by
default to the basename of the corresponding segment files.
See also the hls muxer, which provides a more specific implementation for HLS segmentation.
Options
The segment muxer supports the following options:
reference_stream specifier
Set the reference stream, as specified by the string specifier. If specifier is set to "auto", the
reference is choosen automatically. Otherwise it must be a stream specifier (see the ``Stream
specifiers'' chapter in the ffmpeg manual) which specifies the reference stream. The default value is
"auto".
segment_format format
Override the inner container format, by default it is guessed by the filename extension.
segment_list name
Generate also a listfile named name. If not specified no listfile is generated.
segment_list_flags flags
Set flags affecting the segment list generation.
It currently supports the following flags:
cache
Allow caching (only affects M3U8 list files).
live
Allow live-friendly file generation.
segment_list_size size
Update the list file so that it contains at most the last size segments. If 0 the list file will
contain all the segments. Default value is 0.
segment_list_entry_prefix prefix
Set prefix to prepend to the name of each entry filename. By default no prefix is applied.
segment_list_type type
Specify the format for the segment list file.
The following values are recognized:
flat
Generate a flat list for the created segments, one segment per line.
csv, ext
Generate a list for the created segments, one segment per line, each line matching the format
(comma-separated values):
,,
segment_filename is the name of the output file generated by the muxer according to the provided
pattern. CSV escaping (according to RFC4180) is applied if required.
segment_start_time and segment_end_time specify the segment start and end time expressed in
seconds.
A list file with the suffix ".csv" or ".ext" will auto-select this format.
ext is deprecated in favor or csv.
ffconcat
Generate an ffconcat file for the created segments. The resulting file can be read using the
FFmpeg concat demuxer.
A list file with the suffix ".ffcat" or ".ffconcat" will auto-select this format.
m3u8
Generate an extended M3U8 file, version 3, compliant with
.
A list file with the suffix ".m3u8" will auto-select this format.
If not specified the type is guessed from the list file name suffix.
segment_time time
Set segment duration to time, the value must be a duration specification. Default value is "2". See
also the segment_times option.
Note that splitting may not be accurate, unless you force the reference stream key-frames at the
given time. See the introductory notice and the examples below.
segment_time_delta delta
Specify the accuracy time when selecting the start time for a segment, expressed as a duration
specification. Default value is "0".
When delta is specified a key-frame will start a new segment if its PTS satisfies the relation:
PTS >= start_time - time_delta
This option is useful when splitting video content, which is always split at GOP boundaries, in case
a key frame is found just before the specified split time.
In particular may be used in combination with the ffmpeg option force_key_frames. The key frame times
specified by force_key_frames may not be set accurately because of rounding issues, with the
consequence that a key frame time may result set just before the specified time. For constant frame
rate videos a value of 1/(2*frame_rate) should address the worst case mismatch between the specified
time and the time set by force_key_frames.
segment_times times
Specify a list of split points. times contains a list of comma separated duration specifications, in
increasing order. See also the segment_time option.
segment_frames frames
Specify a list of split video frame numbers. frames contains a list of comma separated integer
numbers, in increasing order.
This option specifies to start a new segment whenever a reference stream key frame is found and the
sequential number (starting from 0) of the frame is greater or equal to the next value in the list.
segment_wrap limit
Wrap around segment index once it reaches limit.
segment_start_number number
Set the sequence number of the first segment. Defaults to 0.
reset_timestamps 1|0
Reset timestamps at the begin of each segment, so that each segment will start with near-zero
timestamps. It is meant to ease the playback of the generated segments. May not work with some
combinations of muxers/codecs. It is set to 0 by default.
initial_offset offset
Specify timestamp offset to apply to the output packet timestamps. The argument must be a time
duration specification, and defaults to 0.
Examples
· To remux the content of file in.mkv to a list of segments out-000.nut, out-001.nut, etc., and write
the list of generated segments to out.list:
ffmpeg -i in.mkv -codec copy -map 0 -f segment -segment_list out.list out%03d.nut
· As the example above, but segment the input file according to the split points specified by the
segment_times option:
ffmpeg -i in.mkv -codec copy -map 0 -f segment -segment_list out.csv -segment_times 1,2,3,5,8,13,21 out%03d.nut
· As the example above, but use the ffmpeg force_key_frames option to force key frames in the input at
the specified location, together with the segment option segment_time_delta to account for possible
roundings operated when setting key frame times.
ffmpeg -i in.mkv -force_key_frames 1,2,3,5,8,13,21 -codec:v mpeg4 -codec:a pcm_s16le -map 0 \
-f segment -segment_list out.csv -segment_times 1,2,3,5,8,13,21 -segment_time_delta 0.05 out%03d.nut
In order to force key frames on the input file, transcoding is required.
· Segment the input file by splitting the input file according to the frame numbers sequence specified
with the segment_frames option:
ffmpeg -i in.mkv -codec copy -map 0 -f segment -segment_list out.csv -segment_frames 100,200,300,500,800 out%03d.nut
· To convert the in.mkv to TS segments using the "libx264" and "libfaac" encoders:
ffmpeg -i in.mkv -map 0 -codec:v libx264 -codec:a libfaac -f ssegment -segment_list out.list out%03d.ts
· Segment the input file, and create an M3U8 live playlist (can be used as live HLS source):
ffmpeg -re -i in.mkv -codec copy -map 0 -f segment -segment_list playlist.m3u8 \
-segment_list_flags +live -segment_time 10 out%03d.mkv
tee
The tee muxer can be used to write the same data to several files or any other kind of muxer. It can be
used, for example, to both stream a video to the network and save it to disk at the same time.
It is different from specifying several outputs to the ffmpeg command-line tool because the audio and
video data will be encoded only once with the tee muxer; encoding can be a very expensive process. It is
not useful when using the libavformat API directly because it is then possible to feed the same packets
to several muxers directly.
The slave outputs are specified in the file name given to the muxer, separated by '|'. If any of the
slave name contains the '|' separator, leading or trailing spaces or any special character, it must be
escaped (see the "Quoting and escaping" section in the ffmpeg-utils(1) manual).
Muxer options can be specified for each slave by prepending them as a list of key=value pairs separated
by ':', between square brackets. If the options values contain a special character or the ':' separator,
they must be escaped; note that this is a second level escaping.
The following special options are also recognized:
f Specify the format name. Useful if it cannot be guessed from the output name suffix.
bsfs[/spec]
Specify a list of bitstream filters to apply to the specified output.
It is possible to specify to which streams a given bitstream filter applies, by appending a stream
specifier to the option separated by "/". spec must be a stream specifier (see Format stream
specifiers). If the stream specifier is not specified, the bistream filters will be applied to all
streams in the output.
Several bitstream filters can be specified, separated by ",".
select
Select the streams that should be mapped to the slave output, specified by a stream specifier. If not
specified, this defaults to all the input streams.
Examples
· Encode something and both archive it in a WebM file and stream it as MPEG-TS over UDP (the streams
need to be explicitly mapped):
ffmpeg -i ... -c:v libx264 -c:a mp2 -f tee -map 0:v -map 0:a
"archive-20121107.mkv|[f=mpegts]udp://10.0.1.255:1234/"
· Use ffmpeg to encode the input, and send the output to three different destinations. The "dump_extra"
bitstream filter is used to add extradata information to all the output video keyframes packets, as
requested by the MPEG-TS format. The select option is applied to out.aac in order to make it contain
only audio packets.
ffmpeg -i ... -map 0 -flags +global_header -c:v libx264 -c:a aac -strict experimental
-f tee "[bsfs/v=dump_extra]out.ts|[movflags=+faststart]out.mp4|[select=a]out.aac"
· As below, but select only stream "a:1" for the audio output. Note that a second level escaping must
be performed, as ":" is a special character used to separate options.
ffmpeg -i ... -map 0 -flags +global_header -c:v libx264 -c:a aac -strict experimental
-f tee "[bsfs/v=dump_extra]out.ts|[movflags=+faststart]out.mp4|[select=\'a:1\']out.aac"
Note: some codecs may need different options depending on the output format; the auto-detection of this
can not work with the tee muxer. The main example is the global_header flag.
METADATA
FFmpeg is able to dump metadata from media files into a simple UTF-8-encoded INI-like text file and then
load it back using the metadata muxer/demuxer.
The file format is as follows:
1. A file consists of a header and a number of metadata tags divided into sections, each on its own
line.
2. The header is a ';FFMETADATA' string, followed by a version number (now 1).
3. Metadata tags are of the form 'key=value'
4. Immediately after header follows global metadata
5. After global metadata there may be sections with per-stream/per-chapter metadata.
6. A section starts with the section name in uppercase (i.e. STREAM or CHAPTER) in brackets ('[', ']')
and ends with next section or end of file.
7. At the beginning of a chapter section there may be an optional timebase to be used for start/end
values. It must be in form 'TIMEBASE=num/den', where num and den are integers. If the timebase is
missing then start/end times are assumed to be in milliseconds. Next a chapter section must contain
chapter start and end times in form 'START=num', 'END=num', where num is a positive integer.
8. Empty lines and lines starting with ';' or '#' are ignored.
9. Metadata keys or values containing special characters ('=', ';', '#', '\' and a newline) must be
escaped with a backslash '\'.
10. Note that whitespace in metadata (e.g. foo = bar) is considered to be a part of the tag (in the
example above key is 'foo ', value is ' bar').
A ffmetadata file might look like this:
;FFMETADATA1
title=bike\\shed
;this is a comment
artist=FFmpeg troll team
[CHAPTER]
TIMEBASE=1/1000
START=0
#chapter ends at 0:01:00
END=60000
title=chapter \#1
[STREAM]
title=multi\
line
By using the ffmetadata muxer and demuxer it is possible to extract metadata from an input file to an
ffmetadata file, and then transcode the file into an output file with the edited ffmetadata file.
Extracting an ffmetadata file with ffmpeg goes as follows:
ffmpeg -i INPUT -f ffmetadata FFMETADATAFILE
Reinserting edited metadata information from the FFMETADATAFILE file can be done as:
ffmpeg -i INPUT -i FFMETADATAFILE -map_metadata 1 -codec copy OUTPUT
SEE ALSO
ffmpeg(1), ffplay(1), ffprobe(1), ffserver(1), libavformat(3)
AUTHORS
The FFmpeg developers.
For details about the authorship, see the Git history of the project (git://source.ffmpeg.org/ffmpeg),
e.g. by typing the command git log in the FFmpeg source directory, or browsing the online repository at
.
Maintainers for the specific components are listed in the file MAINTAINERS in the source code tree.
2014-04-11 FFMPEG-FORMATS(1)